Vertex-Addition Strategy for Domination-Like Invariants

نویسندگان

  • Michitaka Furuya
  • Naoki Matsumoto
چکیده

In [J. Graph Theory 13 (1989) 749–762], McCuaig and Shepherd gave an upper bound of the domination number for connected graphs with minimum degree at least two. In this paper, we propose a simple strategy which, together with the McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number via the number of leaves. We also apply the same strategy to other domination-like invariants, and find a relationship between such invariants and the number of leaves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

Splice Graphs and their Vertex-Degree-Based Invariants

Let G_1 and G_2 be simple connected graphs with disjoint vertex sets V(G_1) and V(G_2), respectively. For given vertices a_1in V(G_1) and a_2in V(G_2), a splice of G_1 and G_2 by vertices a_1 and a_2 is defined by identifying the vertices a_1 and a_2 in the union of G_1 and G_2. In this paper, we present exact formulas for computing some vertex-degree-based graph invariants of splice of graphs.

متن کامل

Signed total Italian k-domination in graphs

Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...

متن کامل

Packing and Domination Invariants on Cartesian Products and Direct Products

The dual notions of domination and packing in finite simple graphs were first extensively explored by Meir and Moon in [15]. Most of the lower bounds for the domination number of a nontrivial Cartesian product involve the 2-packing, or closed neighborhood packing, number of the factors. In addition, the domination number of any graph is at least as large as its 2-packing number, and the invaria...

متن کامل

A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017